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Abstract

This paper describes the AZ.A architecture for agents whose
behavior is driven by their intentions and who reason about,
and act in, changing environments. The description of the
domain, written in action language AL, includes both a de-
scription of agent’s environment and the Theory of Intentions
which describes properties of intentions. The architecture is
designed to make agents capable of explaining unexpected
observations (by means of diagnostic reasoning) and deter-
mining which of his actions are infended at the present mo-
ment. Reasoning tasks are reduced to computing answer sets
of CR-Prolog programs constructed automatically from the
agent’s knowledge.

Introduction

This paper presents a new declarative methodology for de-
sign and implementation of intelligent agents. We limit our
attention to a single agent satisfying the following assump-
tions:

e the agent’s environment, its mental state, and the effects of
occurrences of actions can be represented by a transition
diagram. States of the diagram contain physical properties
of the world as well as mental attitudes of the agent. Tran-
sitions are caused by actions and reflect possible changes
in these states;

e the agent is capable of making correct observations, re-
membering the domain history, and correctly recording
the results of his attempts to perform actions';

e normally, the agent is capable of observing the occurrence
of all relevant exogenous? actions.

The assumptions are satisfied by a number of interesting do-
mains but in many cases they are, of course, too restrictive.
In our future work we plan to expand our architecture to
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systems in which agents are capable of communicating with
each other, and to agents who can only determine a likeli-
hood of success and failure of some of their actions and ob-
servations. These problems are, however, orthogonal to the
main issues considered here. The topic of this paper is to a
certain degree related to that of execution monitoring (des-
Jardins et al. 1999). A precise evaluation of the relationship
will be the subject of future research.

Our approach to agent design (referred to as AZ.A) bor-
rows a substantial number of ideas from an earlier work on
the AAA architecture (Balduccini and Gelfond 2008). In
this work declarative action language AL (Baral and Gel-
fond 2000) was used to concisely define a transition diagram
of the agent’s domain together with the domain’s recorded
history. Slightly generalized causal laws and history records
of AL are used for the same purpose in our approach. (The
use of the former can be traced to (Baral and Gelfond 2000).
The use of the latter is new.) The main difference between
AAA and AZA is in the organization of the basic control
loop of the agent. In both cases the agent uses its knowledge
about the domain to perform diagnostic and planning tasks.
However, in our approach the loop is centered around the
notion of intention which is absent in AAA. The use of in-
tentions simplifies and generalizes the loop and allows the
agent to more naturally persist in its commitment to achieve
its goals. Moreover, it allows an outside observer (including
the agent designer) to reason about agent’s behavior, e.g. to
prove that the agent will never perform any unintended ac-
tions. The AZ.A’s focus on intentions and their primary role
in intelligent behavior makes the architecture a special case
of the well known BDI methodology for the design of in-
telligent agents (Rao and Georgeff 1991) and (Wooldridge
2000). These BDI systems are grounded in declarative log-
ics for reasoning about an agent’s beliefs, desires, and in-
tentions. These logics are not executable and not clearly
connected to executable systems. In our approach we rem-
edy this problem. In formalizing the notion of intention we
borrow some basic intuition about such properties of inten-
tions as persistence and non-procrastination from (Baral and
Gelfond 2005), where the authors formalized the behavior
of an agent intending to execute a sequence of actions in
ASP. While the theory from (Baral and Gelfond 2005) has
been used for question answering from natural language (In-
clezan 2010), for activity recognition (Gabaldon 2009), and



for other intelligent tasks, it is not sufficient for the goal-
oriented reasoning of intentional agents. The technical fea-
tures of our theory of intentions are quite different and sub-
stantially more advanced.

The technical realization of AZA is based on two main
technical contributions:

e Introduction of formal theory of intentions (7 7).

e Development of an algorithm which takes the agent’s
knowledge (including the theory of intentions), explains
the unexpected observations and computes an action the
agent will intend to perform. (Note, that when necessary,
the second task can require planning).

The 77 represents properties of intentions as a collection of
statements of an action theory of AL. This ensures declara-
tivity and allows for seamless integration of 77 with agent’s
knowledge about the world and its own actions and history.
Existence of a reasoning algorithm ensures that the declara-
tive specification of an agent can be actually executed. The
algorithm is based on the reduction of the task of explaining
observations and finding an intended action to the problem
of computing answer sets of a program of CR-Prolog (Bal-
duccini and Gelfond 2003) automatically generated from the
agent’s knowledge. As usual answer sets are computed by a
general purpose algorithm implemented by a comparatively
efficient answer set solver (Balduccini 2007). A prototype
implementation of a software called AZ.A Agent Manager
allows to test this methodology. The following example in-
formally describes the agent and illustrates its intended be-
havior by a number of simple (but non-trivial) scenarios.
AL A Agent Manager is used to build the agent that is proven
to correctly automate this behavior.

Example 1 [Bob and John]

Consider an environment that contains our agent Bob, his
colleague John, and a row of four rooms, r1, r2, r3, r4
where consecutive rooms are connected by doorways, such
that either agent may move along the row from one room
to the next. The door between rooms r3 and r4 is special
and can be locked and unlocked by both Bob and John. If
the door is locked then neither can move between those two
rooms until it is unlocked. Bob and John meet if they are
located in the same room.

Scenario 1: Planning to achieve the goal

Initially Bob knows that he is in 1, his colleague John is
in 73, and the door between 3 and 74 is unlocked. Suppose
that Bob’s boss requests that he meet with John. This causes
Bob to intend to meet with John. This type of intention is
referred to as an intention to achieve a goal. Since Bob acts
on his intentions, he uses his knowledge of the domain to
choose a plan to achieve his goal. Of course Bob does not
waste time and chooses the shortest plan that he expects to
achieve his goal, that is to move from 1 to 72 and then to 3.
A pair consisting of a goal and the plan aimed at achieving it
is called an activity. To fulfill his intention of meeting John,
Bob intends to execute the activity consisting of the goal to
meet John and the two step plan to move from r1 to 73. The
process of executing an activity begins with a mental® action

3 Actions that directly affect an agent’s mental state are referred

to start the activity. Assuming there are no interruptions, the
process continues with the execution of each action in the
plan (in this case, moving to 72, then to 73). After meeting
John in 3 the process concludes with an action to stop the
activity.

Scenario 2: Unexpected achievement of goal

Now suppose that as Bob is moving from r1 to 72, he ob-
serves John moving from r3 to r2. In this case it will be
rational for Bob to recognize the unexpected achievement of
his goal, stop executing his activity, and not continue mov-
ing to 3.

Scenario 3: Not expected to achieve goal and replanning
Now suppose that as Bob is moving from r1 to 72 he ob-
serves John moving from 73 to r4. Bob should recognize
that in light of this new observation the continued execution
of his activity is not expected to achieve the goal, i.e. his
activity is futile. As a result, he should stop executing his
activity and start executing a new one (containing a plan to
move to 3 and then to r4) that is expected to achieve the
goal of meeting John.

Scenario 4: Abandon goal

During the execution of his activity, Bob’s boss may with-
draw the request for Bob to meet with John. In this case Bob
no longer intends to achieve the goal of meeting John. He
should stop executing the activity with the goal to do so and
not continue moving toward John.

Scenario 5: Failure to achieve goal, diagnosis, and re-
planning

Suppose now that Bob moved from r1 to r2 and then to
73, but observes that John is not there. Bob must recognize
that his activity failed to achieve the goal. Further analysis
should allow Bob to conclude that, while he was executing
his activity, John must have moved to 4. Bob doesn’t know
exactly when John moved and there are three possibilities.
John could have moved while Bob was 1) starting his ac-
tivity, 2) moving to 72, or 3) moving to 3. In any case since
Bob is committed to achieving his goal of meeting John his
intention to do so persists. Bob will come up with a new ac-
tivity (containing a plan to move to r4) to achieve the goal
of meeting John.

Scenario 6: Unexpected failure to execute, diagnosis, and
replanning

We continue from scenario 5. Bob starts executing his ac-
tivity containing a plan to move to 4. Then, believing that
the door is unlocked, Bob attempts to move from 73 to r4,
but is unable to perform the action. This is unexpected, but
Bob realizes that John must have locked the door after mov-
ing to 4. Bob’s new activity contains the same goal to meet
John and a plan to unlock the door before moving to 74.
Scenario 7: Revision of explanations and replanning
Suppose that Bob is in 1 and has just started his activity
to move to 3. Bob is then told that John is no longer in 3.
Bob reasons that there are two possible explanations. John
must have moved to either 72 or 4 while Bob was starting
his activity. In the first case, Bob’s activity is still expected
to achieve his goal after he moves to 72, but in the second

to as mental actions, while those actions that directly affect the state
of the environment are referred to as physical actions.



case his activity is not. Bob is optimistic and since there is
a possibility that his activity will achieve the goal, he con-
tinues executing it by moving to r2. Then he observes that
John is not in 72 and realizes that the explanation that John
moved there is invalid. Bob’s only remaining explanation is
that John moved to r4. With this he reasons that his activ-
ity is not expected to achieve the goal, so he stops it. Bob’s
intention to meet John persists so he starts a new activity
containing a plan to move to 73 and then to r4.

Despite the comparative simplicity of the tasks illustrated by
these scenarios we are unaware of any systematic declarative
methodology which will allow us to easily build an agent
capable of the type of reasoning needed to perform them.

Background

We start with briefly describing syntax and informal seman-
tics of Action Language AL. For the formal semantics see
(Gelfond and Kahl 2013). AL is parametrized by a sorted
signature containing three special sorts actions, fluents and
statics, (properties which can (can not) be changed by ac-
tions). The fluents are partitioned into two sorts: inertial and
defined. Together, statics and fluents are called domain prop-
erties. A domain literal is a domain property p or its negation
—p. If domain literal [ is formed by a fluent, we refer to it as
a fluent literal; otherwise it is a static literal.

Definition 1 (Statements of AL) Language AL allows the
following types of statements:

1. Causal Laws:
a causes l;, if po,...,pm

2. State Constraints.

Lif po,. . DPm
3. Executability Conditions:
impossible aq, ..., a; if po,...,Pm
where k > 0, a,aq,...,ay are actions, l is an arbitrary

domain literal, called the head of constraint, l;,, is a literal
formed by an inertial fluent, and po, . . . , P, S a possibly
empty set of domain literals*. Moreover, no negation of a
defined fluent can occur in the heads of state constraints.

The collection of state constraints whose head is a defined
fluent f is referred to as the definition of f. As in logic pro-
gramming definitions, f is true if it follows from the truth of
the body of at least one of its defining rules. Otherwise, f is
false.

Definition 2 [System Description]
A system description of AL is a collection of statements of
AL over some (implicitly defined) signature.

In this paper we expand the syntax of AL by requiring its
signature to contain activities — triples consisting of a goal, a
plan aimed at achieving this goal, and a name. We name ac-
tivities by natural numbers. For example, Bob’s activity for
meeting with John, denoted by 1, is given by the following:

(1, [move(b, rl,r2), move(b, r2,73)], meet(b, j)) (1)

*If the set is empty, then keyword if is omitted.

from Scenario 1 consists of a plan to move to 72 and then
to 73 in order to meet John; 1 is the name of the activity.
For simplicity of representation in AL this activity will be
represented by the following statics:

activity(1).

comp(1,1, move(b,rl,r2)).

comp(1,2, move(b,r2,13)). )
length(1,2).

goal(1, meet (b, j)).

where comp(X,Y, A) states that A is the Y element of the
plan of activity X, and length(X, N) says that the plan of
activity X has length . In this example both components of
the activity’s plan are actions. In general, they can be other,
previously defined, activities.

Normally, a system description of AL is used together
with a recorded history of the domain — a collection of
agent’s observations. In traditional action theories such his-
tories determine past trajectories of the system the agent be-
lieves to be possible. Such trajectories are called models of
a history. If no such model exists the history is deemed in-
consistent. For instance, given an action theory with inertial
fluents f, g and p, agent actions a; and ag, an exogenous
action b and causal laws

ay causes f
as causes g if f,p
b causes —p

a history

r— obs(p, true,0), obs(f, false,0) hpd(aq,0),
| hpd(az,1), obs(g, false,?2)

is inconsistent. (Here obs(F,V,I) says that the observed
value of fluent F' at the I'" step of the trajectory is V;
hpd(A, I) indicates that action A happened at step 1.)

In this work we expand the notion of domain history and to
modify the notion of history’s model. The new domain his-
tory includes two more types of statements: attempt(A,I)
and —hpd(A,I). The former indicates that the agent at-
tempted to execute action A at step 7. If at that point the pre-
conditions for executability of A are satisfied then action A
is successful and, therefore, the domain history will contain
hpd(A, I); otherwise it will contain —hpd(A, I) stating that
A did not happen. The notion of models is modified to allow
the agent to explain unexpected observations by assuming
the occurrence of a minimal collection of occurrences of ex-
ogenous actions missed by the agent. According to the new
definition, a history I'” that extends I" from above:

I = T U {attempt(ay,0), attempt(az, 1)}

is not inconsistent. For example, it has a model

<{ﬁf7 ﬁ9717}7 {ala b}v {f7 -9, ﬁp}v {a2}’ {f7 -9, jp})'

Theory of Intentions

Now we are ready to start the description of the vocabulary
of our theory of intentions. Intuitively, Bob’s mental state is
primarily described by two inertial fluents: active_goal(g)
that holds when the agent intends to achieve goal g, and



status(m, k) that describes the agent’s intent to execute ac-
tivity m and the current state of the process of execution.
More precisely status(m, k) where L is the length of m and
0 < k < L holds when £ is the index of the component of
m that has most recently been executed, and status(m, —1)
holds when the agent does not intend to execute m>. The
inertial property of these two fluents elegantly captures the
natural persistence of the agent’s intentions.

The two mental actions start(m) and stop(m) directly
affect the mental state of the agent by initiating and termi-
nating the agent’s intent to execute activity m. A special
exogenous mental action select(g), which can be thought
of as being performed by the agent’s controller, causes the
agent’s intent to achieve goal g. Similarly special exogenous
action abandon(g) causes the agent to abandon his intent to
achieve g. The agent has a special action wait, which no ex-
ecutability conditions or effects (physical or mental) and can
be seen as doing nothing. Since action wait has no affects,
it is neither a mental or physical action. All other agent and
exogenous actions are said to be physical. While the agent’s
and exogenous mental actions do not affect the state of the
physical environment, some physical actions may affect the
agent’s mental state. The properties of the above actions and
fluents are expressed by the following axioms of AL:

—status(M, K1) if status(M, K2), 3
K1+ K2, G)

Defined fluent active(M) is true when M has a status that
is not equal to —1.

active(M) if =—status(M, —1). (€))

Action start sets the value of status to 0, and action stop
returns the activity to a status of —1.

start(M) causes status(M,0). )
stop(M) causes status(M,—1).

There are natural executability conditions for these actions.
An agent can neither start an active activity, nor stop an
inactive one.

impossible start(M) if active(M).

impossible stop(M) if —active(M). ©)

To simplify our theory we assume that an agent cannot exe-
cute a physical and mental action or multiple mental actions
simultaneously.

impossible A, As if physical_agent_act(Ay),
mental_agent_act(As).
impossible Aj, Ay if mental_agent_act(A;),
mental_agent_act(Az),
Ay # As.
(N
An agent cannot execute a physical agent action and waztt
simultaneously. Similarly for a mental agent action.

impossible A, wait if physical_agent_act(A)
impossible A, wait if mental_agent_act(A).

)

3The agent’s mental state also includes the static fluents which
describe his activities.

Defined fluent child(M1, M) is true when M1 is the current
component of M and defined fluent child_goal(G1,G) is
true when GG and G1 are the goals of M and M1.
child(M1,M) if comp(M,K +1,M1),
status(M, K).
child_goal(G1,G) if child(M1, M), 9
goal(M,G),
goal(M1,G1).
Defined fluent descendant(M1, M) is defined recursively
in terms of defined fluent child.
descendant(M1, M) if child(M1, M).
descendant(M2, M) if descendant(M1,M), (10)
descendant(M2,M1).

Sub-activities and subgoals are represented by defined fluent

minor (M) and minor(G) and are defined by the axioms:
manor(M1) if child(M1, M). (11
minor(G1) if child_goal(G1,G).

We refer to those activities and goals that are not minor

as top-level. Special exogenous actions select and abandon

activate and deactivate a goal respectively.

select(G) causes active_goal(QG). (12)
abandon(G) causes -active_goal(G).
There are natural executability conditions for select and
abandon. A goal that is active cannot be selected and an
inactive or minor goal cannot be abandoned.
impossible select(G) if active_goal(G).
impossible abandon(G) if —active_goal(G). (13)
impossible abandon(G) if minor(G).
We assume that no physical exogenous action may occur
concurrently with a special exogenous action. Similarly for
physical and mental agent actions.
impossible Ay, Ay if special_exog_act(Ay),
physical_exog_act(As).
impossible A, Ay if special_exog-act(A1),
physical_agent_act(Asz).
impossible A, Ay if special_exog_act(Ay),
mental_agent_act(Asz).
(14)
Top-level goals that are achieved are no longer active.
-active_goal(G) if —minor(G),
goal(QG).
The following four axioms describe the propagation of the
intent to achieve a goal to its child goal (i.e. goals that are
minor). Of course, the parent goal may be a top-level goal or
it may also be minor. Note too that the four rules are disjoint,
that is for a particular minor goal G1 at most one of these
axioms will be applicable.

An unachieved minor goal G1 of an activity M1 becomes

active when M1 is the next component of an ongoing ac-

tivity M.

active_goal(G1) if minor(G1),

child_goal(G1,G),
active_goal(Q),
goal(M1,G1),
-G1,
status(M1,—1).

15)

(16)



A minor goal G'1 is no longer active when it is achieved.
-active_goal(G1) if minor(G1),
child_goal(G1,G),
active_goal(QG),
G1.

7)

A minor goal G1 is no longer active when its parent is no
longer active.

—active_goal(G1) if minor(G1),
child_goal(G1,G), (18)
—active_goal(Q).

A minor goal G1 of M1 is no longer active when M1 has
been executed.

—active_goal(G1) if minor(G1),
child_goal(G1, G),
active_goal(QG),

-G1, (19)
goal(M1,G1),

status(M1, K1),
length(M1, K1).

Defined fluent in_progress(M) is true when M is an active
and its goal G is active, and defined fluent in_progress(G)
is true when G is the active goal of an active activity M.

in_progress(M) if active(M),
goal(M, G),
active_goal(QG).

in_progress(G) if active(M),
goal(M,G),
active_goal(QG).

(20)

Defined fluent next_act(M, A) is true if agent action A is
the next action of the ongoing execution of M . Since this flu-
ent describes the ongoing execution, the initial starting and
stopping of a top-level activity are never next_act. However
the starting or stopping of a sub-activity can be the next_act
of the parent activity. Axiom (21) describes when this action
is a physical agent action of M.

next_act(M, A) if physical_agent_act(A),
status(M, K),
comp(M, K + 1, A),
in_progress(M).

21

When the first not yet executed component of M is a sub-
activity M1, then the next action of M is to start M 1.

next_act(M, start(M1)) if status(M, K),
comp(M, K +1,M1),
in_progress(M),
—active(M1).

(22)
The next action of an active sub-activity M 1 propagates up
to its parent M.

next_act(M, A) if agent_act(A),
status(M, K),
comp(M, K + 1, M1),
in_progress(M),
in_progress(M1),
next_act(M1, A).

(23)

The next action of M after the completion of sub-activity
M1 is to stop M 1.

next_act(M, stop(M1)) if status(M, K),
comp(M, K + 1, M1),
in_progress(M),
active(M1),
goal(M1,G1),
—active_goal (G1).

(24)
Executing the next physical action (rule 21) that is the cur-
rent component of activity M increments the status of M.

A causes status(M,K + 1)
if next_act(M, A),
status(M, K), (25)
comp(M,K +1,A),
physical_agent_act(A).

Executing the next action of stopping a sub-activity M1
(rule 26) increments the status of parent M.

stop(M1) causes status(M,K + 1)
if status(M, K),
comp(M, K +1,M1),
next_act(M, stop(M1)).

(26)

Stopping an activity returns its descendants to an inactive
status.

stop(M) causes status(M1,—1)

if descendant(M1, M). 27)

Finally we introduce inertial fluent next_name(M). This
fluent will allow the translation of a system description into
ASP to contain only those activities that are relevant (i.e.
those with names and not all of the possible flat activities
contained in D). Intuitively, next_-name is the first name
that is not yet relevant. As activities are deemed to be rele-
vant and started, the value of next_name increments.

—next-name(M) if next_name(M1), 28)

start(M) causes next-name(M + 1)
if next_name(M), (29)
—minor(M).
This completes the theory of intentions 7 Z.

An intentional system description D consists of a descrip-
tion of the agent’s physical environment, a collection of ac-
tivities, and the theory of intentions. Paths in the transition
diagram 7 (D) correspond to physically possible frajecto-
ries of the domain. A state of the trajectory is divided into
two parts: physical and mental consisting of all physical and
mental fluent literals respectively.

The AZ A Control Strategy

According to AZA control strategy the agent begins by ob-
serving his domain. Observations may not be consistent with
the agent’s expectations. In this case the agent preforms di-
agnostic reasoning to explain unexpected observations. An
observation of an occurrence of special exogenous action



select(g) (12), which initiates the agent’s intent to achieve
goal g, is particularly important to the agent. Our agent is
motivated to change his domain® by the intention to achieve
a goal. Because of his intention to achieve a goal, the agent
finds an activity which may lead to achieving the goal, com-
mits to this activity, and proceeds with its execution. At the
center of this process is a task of deciding the intended action
that the agent should attempt to perform at the current step
in order to fulfill his intention to achieve the goal. Intuitively,
an agent’s behavior is compatible (i.e. is in accordance) with
his intentions when at each step he attempts to perform only
those actions that are intended and does so without delay. To
precisely define such behavior and to formulate and prove
correctness of the architecture we will introduce notions of
intended model and intentional history.

In our architecture this behavior is specified by the fol-
lowing AZ.A control loop.

Observe the world and initialize history with observations;
1. interpret observations;
2. find an intended action e;

3. attempt to perform e and
update history with a record of the attempt;

4. observe the world,
update history with observations, and go to step 1.

Figure 1: AZA control loop

The agent begins by observing his domain and initializing
his history with the observations. In general the observations
need not be complete. Let us assume however for simplic-
ity that the agent’s initial observations are complete. After
initializing the history, the agent enters a loop consisting of
four steps. In step 1 the agent uses diagnostic reasoning to
explain unexpected observations. The agent explains these
observations by hypothesizing that some exogenous actions
occurred unobserved in the past. For simplicity we assume
that the agent is looking for explanations with the small-
est number of such actions. (It will not be difficult to con-
sider actions with costs and to look for explanations with the
smallest costs.) In step 2 the agent finds an intended action.
An intended action is intuitively either to continue execut-
ing an ongoing activity that is expected to achieve its goal;
to stop an ongoing activity whose goal is no longer active
(either achieved or abandoned); to stop an activity that is no
longer expected to achieve its goal; or to start a chosen ac-
tivity that is expected to achieve his goal. Of course, there
may be no way for the agent to achieve his goal or he may
have no goal. In either case the agent’s intended action is to
wait. Step 3 corresponds to an output operation where the
agent attempts to perform an intended action and updates his
history with a record of his attempt. Step 4 corresponds to an
input operation where the agent observes his domain. This
includes not only values of fluents, but also occurrences or
non-occurrences of exogenous actions and the result of his

SWithout the intention to achieve a goal he is not motivated to
change his domain and does nothing (i.e. he waits)

attempt to perform his intended action. This step concludes
when the agent updates his history with the observations and
returns to step 1.

The control loop relies on some natural assumptions about
observation strategies of agents and the behavior of the
agent’s controller. In particular, we assume that at each step
the agent observes the truth or falsity of its goal as well as
the commands (select and abandon) issued to the agent by
its controller. We assume that multiple goals are not simulta-
neously selected and that a goal is selected only when the
agent has neither an intended goal or activity. We also as-
sume that every time the agent finds an explanation of unex-
pected observations it stores in the domain history the size
of this explanation — the number of missed exogenous ac-
tions. All this information will be crucial for determining an
action the agent will intend to perform.

In general, a history I' of the domain defines trajectories in
the transition diagram satisfying I". These trajectories define
physically possible pasts of the domain compatible with ob-
servations in I' and the assumptions about the agent obser-
vation strategy and power. This however does not mean that
every action in such a model is intended by an agent. Sup-
pose Bob procrastinates and he wasts instead of performing
the intended action of starting activity 1, as in the following
consistent history:

obs(in(b,r1), true,0), obs(in(j,r3), true,0),
attempt(wait, 0),

Ty = ¢ hpd(select(meet(b, j),0), hpd(wait, 0),
obs(meet(b, j), false, 1), attempt(wait, 1),
hpd(wait, 1), obs(meet (b, j), false,2)

It can be shown, however, that for histories produced by the
agent executing the AZ.A control loop this is impossible.
Every agent’s action in every model of such a history is in-
tended. (Histories satisfying this property are called inten-
tional.) This is exactly what we require from an intentional
agent.

The Reasoning Algorithms

In this section we present a refinement of the .AZ.A control
loop (Figure 1) in which reasoning tasks performed by the
agent at step n are reduced to computing answer sets of a
CR-Prolog program constructed from intentional system de-
scription D of AL and the domain history I',,.

The program, denoted by II(D,T",), consists of the fol-
lowing parts:

1. II(D) - the translation of D into ASP rules;
2. II(T",) - rules for computing models of T',,.
3. T A(n) - rules for determining intended actions at n.

The first part is not new (see for instance (Gelfond and Kahl
2013)). Construction of II(T",;,) is based on the diagnostic
module of AAA (Balduccini and Gelfond 2003). In addi-
tion to standard axioms (reality check and occurrence aware-
ness axioms) it contains axioms encoding of our domain
assumptions and the effects of a record attempt(A, I) and



occurs(A,I) «— current_step(I1),
I<I1,
attempt(A,I),
not impossible(A, T).
— current_step(I1),
I <11,
occurs(A, I),
not attempt(A, I).
—occurs(A,I) «— current_step(I1),
I<11,
~hpd(A, I).

The next rule is a consistency-restoring rule of CR-Prolog
which allows us to compute minimal explanations of unex-
pected observations.

d(A, 12, 11) : occurs(A, I2) < current_step(I1),
physical_exog_act(A),
12 <1I1.

The size of a minimal explanation is found by the rules

unobs(A,I) «— current_step(I1),
<11,
physical_exog_act(A),
occurs(A, I),
not hpd(A, I).

number_unobs(N,I) «— current_step(I),
N = #count{unobs(EX,1X)}.

where #count is an aggregate function.

Lemma 1 [Computing models of T, ] If Ty, is an intentional
history of D then P,, is a model of I',, iff P, is defined by
some answer set A of II(D) U II(T',,). Moreover, for every
answer set A of TI(D) U II(T,,) number _unobs(xz,n) € A
iff there are x unobserved occurrences of exogenous actions

in A.

The lemma ensures that the first step of AZ.A control
loop, interpreting observations, is reduced to computing an-
swer sets of a program.

To perform the second step — finding an intended ac-
tion — we will need program I A(n). It consists of an atom
interpretation(x,n) where z is the number of unobserved
exogenous actions in the models of I';, and the collection of
rules needed to compute an intended action. We begin with
the following constraint, which requires the agent to adhere
to the outcome of the reasoning completed in step 1.

— current_step(I),
number_unobs(N, ),
interpretation(X, I),

N # X.

This constraint prevents the agent from assuming additional
occurrences of exogenous actions. Next we notice that the
collection of possible histories can be divided in four cate-
gories. The categories, which are uniquely determined by a

mental state of the agent, are used in the rules for computing
intended actions.

A history belongs to the first category if the agent has nei-
ther goal nor activity to commit to, i.e.

category-1(I) « current_step(I),
interpretation(N, I),
not active_goal or_activity(I).

active_goal_or_activity(l) «— current_step(I),
interpretation(N, I),
h(active_goal(G), I).

active_goal_or_activity(Il) «— current_step(I),

interpretation(N, I),
h(active(M), I).

In this case the intended action is wazt.

intended_action(wait, I) «— current_step(I),
interpretation(N, I),
category_1(I).

A history of category 2 corresponds to a mental state of the
agent in which the top-level activity is still active but the
goal of the activity is not.

category 2(M,I) « current_step(I),
interpretation(N, I),
—h(minor(M), I),
h(active(M), I),
goal(M, G),
—active_goal(G).

In this case the activity must be stopped.

intended_action(stop(M), I) < current_step(I),
interpretation(N, I),
category 2(M, I).

The history is of category 3 if it corresponds to a situation in
which a top-level activity and its goal are both active

category3(M,I) — current_step(I),
interpretation(N, I),
—h(minor(M),I),
h(in_progress(M),I).

In this situation the intended action of the agent will simply
be the next action of activity M . But there is an exception to
this rule — the agent needs to check that this activity still has
a chance to lead him to his goal. Otherwise, continuing the
activity will be futile and it should be stopped. This behavior
is achieved by the following rules:

occurs(A, I1) « current_step(I),
category 3(M, ),
interpretation(N, I),
I<I1,
—h(minor(M),I1),
h(in_progress(M ) 11),
h(next_action(M )7 11),
not impossible( I1).



projected_success(M, I) «— current_step(I),
interpretation(N, I),
—h(minor(M),I),
I<I1,
h(active(M),11),
goal(M, G),
h(G,I1).

—project_success(M,I) — current_step(I),
interpretation(N, I),

not project_success(M,I).

If there is an answer set of a program containing pro-
jected_success(M,]) then the next action is given by the rule:

intended_action(A, I) «— current_step(I),
interpretation(N, I),
category-3(M,I),
h(next_action(M, A),I),
projected_success(M, I).

If no such answer set exists then the activity is futile. This is
defined by the following cr-rule and constraint:

F(M,T) : futile(M,I) <& current_step(I),
interpretation(N, I),
category 3(M,T),
—projected_success(M, I).

— current_step(I),
interpretation(N,T),
category-3(M,I),
—projected_success(M, T),
not futile(M,I).

In this case the intended action is stop:

intended_action(stop(M),I) «— current_step(I),
interpretation(N, I),
category 3(M,T),
futile(M,I).

Due to the lack of space we omit the definition of category
4 in which there is an active goal but the agent does not
yet have a plan to achieve it. In this case an intended action
will begin executing either an activity containing a shortest
plan for achieving this goal or wasit if such activity does not
exist. The planning uses cr-rules similar to that in (Blount
and Gelfond 2012). The resulting program shows that, by
mixing regular ASP rules with consistency restoring rules,
CR-Prolog is capable of expressing rather non-trivial forms
of reasoning. The following lemma ensures that step 2 of the
AZA control loop — finding an intended action — is reduced
to computing answer sets of II(D, T',,).

Lemma 2 [computing intended actions of I',,] Let '), be
an intentional history and x be the number of unobserved
occurrences of exogenous actions in a model of T'y,. Ac-
tion e is an intended action of T, iff some answer set A
of II(D,T',) U {interpretation(x,n).} contains the atom
intended_action(e, n).

Conclusions

This paper describes the .AZ.A architecture for agents whose
behavior is driven by their intentions and who reason about,
and act in, changing environments. We presented a formal
model of an intentional agent and its environment that in-
cludes the theory of intentions 7Z. Such a model was ca-
pable of representing activities, goals, and intentions. We
presented an algorithm that takes the agent’s knowledge,
(including 77), explains unexpected observations and com-
putes the agent’s intended action. Both reasoning tasks are
reduced to computing answer sets of CR-prolog programs
constructed automatically from the agent’s knowledge.
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