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Abstract

In this paper we give a brief introduction to the declar-
ative knowledge representation and logic programming
language A-Prolog. We demonstrate the methodol-
ogy of programming in A-Prolog by developing a sim-
ple declarative program describing dynamic behavior of
combinational digital circuits. The implementation is
proven to be correct and is supplied with a graphical
interface which facilitates the use by students. Our ex-
periment confirms our belief that A-Prolog can become
a language of choice for various knowledge intensive
applications.

1. Introduction

It is becoming increasingly clear that to fully realize the
potential of the computer revolution, computer scien-
tists must develop a systematic methodology for design
and construction of software systems capable of basing
their behavior on knowledge about their environment.
Without such methodology we can create neither au-
tonomous robots nor intelligent information, expert,
and decision making systems. This realization led to
work on design and implementation of powerful knowl-
edge representation languages ([3, 17]).

Most of these languages are based on various forms of
classical logic. Even though useful in many situations,
these languages are severely limited in their ability to
represent various forms of common sense knowledge.
In particular, they are not very suitable to represent
and reason about defaults, i.e., statements of the form
“Elements of class C' normally, as a rule have property
P.” Defining the sets of valid conclusions which can
be obtained from collections of defaults, and discov-
ering various ways to efficiently arrive at such conclu-
sions, is long recognized as one of the central themes
in the area of knowledge representation and reason-
ing. Recent advances on solution of this problem led
to development of knowledge representation languages
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with roots in logic programming. Unlike classical logic,
the logic which forms the basis for these languages is
nonmonotonic, i.e., allows the reasoner to withdraw
his/her previous conclusions when new information be-
comes available. This property of the logic allows an
elegant formalization of default reasoning. In this pa-
per we give a brief introduction to one of such lan-
guages, called A-Prolog. We believe that A-Prolog is
rapidly becoming a very promising candidate as the
language of choice for many knowledge representation
tasks [19, 26] (for an alternative approach see [1]). The
use of A-Prolog will be illustrated by developing a sim-
ple declarative program describing dynamic behavior
of combinational digital circuits.’

The program is short and has mainly an illustrative
character. Its natural extensions can, however, be used
as a learning tool by students taking classes in digital
logic.

The syntax and semantics of A-Prolog is not new. The
syntax expands a traditional notion of a rule from
“classical” logic programming ([16]) by introducing ad-
ditional logical connectives. The semantics is given by
the notion of the answer set of a program [10, 11].
Originally, answer set semantics of “classical” logic pro-
grams were designed to give a declarative meaning to
the logical connective not, called negation as failure,
used in the Prolog programming language. Later, the
language was extended by adding classical negation,
disjunction, and other constructs, which made it a pow-
erful theoretical tool for studying various forms of com-
mon sense reasoning (see, for instance, [4]). Practi-
cal applications of A-Prolog were somewhat limited by
the lack of a powerful inference engine capable of com-
puting its entailment relation. The “classical” logic
programming engines like those implemented in Prolog
and XSB interpreters ([32]), though sound with respect
to answer set semantics, are not sufficiently powerful to

1Tn this paper, we refer to “combinational digital circuits” as
“digital circuits.”



reason with programs which have more than one an-
swer set. This situation arises when knowledge about
the domain, encoded by the corresponding program, is
incomplete and allows alternative consistent views of
what relations are satisfied by the objects of the do-
main. Such incompleteness causes Prolog-like engines
to go into infinite loops or to return the answer un-
known to too many queries. The situation changed re-
cently with the coming of age of a new class of inference
engines for A-Prolog, such as SMODELS ([25]), DLV ([8]),
DeReS ([5]). These engines are limited to programs
which have a finite number of answer sets. Given a
program they compute one or all of such models. In
this sense, the engines can be better viewed as satis-
fiability checkers than as theorem provers. Their de-
velopment substantially increased the use of A-Prolog
for various applications [6, 7, 9, 14, 37] and allowed
some authors to talk about a new logic programming
paradigm [19, 26].

The paper is organized as follows. In the next section
we introduce syntax and semantics of A-Prolog. Sec-
tion 3 gives a short introduction to digital circuits and
section 4 presents the simple circuit theory in A-Prolog.
In section 5 we show how this theory can be applied to
solve several problems in circuit design. Conclusions
and future work are presented in the last section.

2. A-Prolog

In this paper the language of choice is A-Prolog — a lan-
guage of logic programs under the answer set semantics
[10, 11]. A program in A-Prolog consists of a signature
3 and a collection of rules of the form:

head + body (1)

where head is empty or consists of a literal Iy and body
is of the form: ly,...,ln, not ly41,. .., not l,, where [;
’s are literals over 2. A literal is an atom p or its nega-
tion —p. If body is empty we replace < by a period.
While —p says that p is false, not p has an epistemic
character and can be read as “there is no reason to be-
lieve that p is true.” The symbol not denotes a non-
standard logical connective often called default nega-
tion or negation as failure. A program II in A-Prolog
can be viewed as a specification given to a rational
agent for constructing beliefs about possible states of
the world. Technically, these beliefs are captured by
the notion of answer set of program II. By ground(II)
we denote a program obtained from II by replacing
variables by the ground terms of ¥. By answer sets of
IT we mean answer sets of ground(II). If II consists of
rules not containing default negation, then its answer

set S is the smallest set of ground literals of ¥ which
satisfies the following two conditions:

1. S is closed under the rules of ground(Il), i.e., for
every rule (1) in II, either there is a literal [ in
its body such that I € S or its non-empty head
lpeS.

2. If S contains an atom p and its negation —p, then
S contains all ground literals of the language.

It is not difficult to show that there is at most one set
(Cn(II)) satisfying these conditions.

Now let II be an arbitrary ground program in A-Prolog.
For any set S of ground literals of its signature X, let
II° be the program obtained from II by deleting:

(i) each rule that has an occurrence of not [ in its body
with [ € S,

(ii) all occurrences of not [ in the bodies of the remain-
ing rules.

Then S is an answer set of IT if

S = Cn(115). (2)

In this paper we limit our attention to consistent pro-
grams, i.e., programs with at least one consistent an-
swer set. Let S be an answer set of II. A ground literal
lis truein S if I € S; falsein S if -l € §. This is
expanded to conjunctions and disjunctions of literals
in a standard way. A query @ is entailed by a program
II (I = Q) if @ is true in all answer sets of II. Queries
IiA...Alpand I; V...V, are called complementary.?
If Q@ and Q are complementary queries, then II’s an-
swer to @Q is yes if Il = Q; no if Il = Q, and unknown
otherwise.

Here are some examples. Assume that signature ¥
contains two object constants a and b. The program
II; = {—p(X) + not ¢(X). g(a).} has the unique an-
swer set S = {q(a), 7p(b)}. The program II; = {p(a) +
not p(b). p(b)+ not p(a).} has two answer sets, {p(a)}
and {p(b)}. The programs II3 = {p(a) < not p(a).}
and Iy = {p(a). < p(a).} have no answer sets.

It is easy to see that programs of A-Prolog are non-
monotonic. For example consider program II;. We
saw that II; = —p(b), however, if some new infor-
mation, ¢(b), is added to the program, it forces the
withdrawal of the previous conclusion —p(b). The new
program IT; U ¢(b) has the following unique answer set
{q(a), q(b)}. Nonmonotonicity is an important feature

2Given an atom p, [ is defined as —p if | = p, or as p if | = —p.



of A-Prolog which makes it a suitable formalism for
representing common sense reasoning and reasoning
about time and change. A-Prolog is closely connected
with more general nonmonotonic theories. In partic-
ular, as was shown in [11, 18], there is a simple and
natural mapping of programs in A-Prolog into a sub-
class of Reiter’s default theories [29]. Similar results
are also available for Autoepistemic Logic [23].

3. Digital Circuits

Normally, computer science students start to study
foundations of digital design in their first or second
year at the university. First they concentrate on com-
binational circuits which are constructed from simple
boolean gates and are used to compute boolean func-
tions. Given such a function ¥ = f(Xi,...,Xn),
where Y and Xj,...,X, are boolean variables, stu-
dents learn how to use propositional logic to construct
a circuit C which instantaneously transforms the values
X1,...,X, applied on its input wires Wy,..., W, to
the value Y on its output wire W. Later, they move to
building more complex devices employing more com-
plex, sequential circuits. The model of a circuit re-
mains, however, essentially boolean with the only pos-
sible signals corresponding to 0 and 1, and basic gates
still performing instantaneous transmission of informa-
tion. In more advanced classes students normally “dis-
cover” that the boolean model they have learned is not
always a realistic one. Gates suffer from physical lim-
itations, i.e., do not instantaneously perform the func-
tion that they implement because of propagation (and
other types) of delays. For a short time, the values
of signals may lie somewhere between the levels neces-
sary to classify them as 0 and 1, and will therefore be
undefined. There are other situations where the ana-
log (continuous and non-digital) character of gates and
signals should be taken into account. To model such
phenomena, scientists introduced the notion of a digital
circuit with delays ([22, 36]) and three possible input
values: 0, 1, and 1/2 (undefined) [36]. These circuits
do not instantaneously produce the values of the corre-
sponding functions. Instead, these values are produced
after delays, which are determined by the circuit and
the vector of input signals.

To make it usable for mathematical proofs, this expla-
nation needs to be clarified.

Definition 3.1 Let X,,...,X,, be boolean values ap-
plied to input wires Wy, ..., W, of a circuit C at time
t, letY = f(X1,...,Xn) be a boolean function, and §
be a mon-negative integer. We say that circuit C com-
putes f(Xi,...,X,) with a delay & if, in the absence

of other inputs, the value on its output wire W at any
time t' > t+ 0§ is equal to Y. C computes function f
with a delay 6 if it computes all the values of f with
this delay.

Introduction of delays and unknown signals bring to
life a number of questions not present in the case of
ideal (time independent) boolean circuits. We need to
know for instance, how these ¢’s can be computed, how
we can guarantee that a particular circuit computes f
with a given 4, how we can check if a component of
a circuit can be replaced by a similar component with
a smaller/bigger delay without violating some impor-
tant properties of the circuit, etc. To answer these and
similar questions we need to have a precise description
of the behavior of a circuit, which, given a sequence
of values applied to its input wires, will determine the
values of signals present on every wire of the circuit at
any moment of time. In the next section we will de-
sign and implement a program in A-Prolog which does
exactly that.

4. Circuits in A-Prolog

We will start with introducing a simple language L
for describing digital circuits. The language has four
types of object constants (names for objects of the do-
main): (a) g1, 92 ... for gates; (b) wy,ws, ... for wires;
(c) 0,1, u for signals; (d) andg, org, notg for the three
basic gate types we chose to represent.

Variables for gates, wires, and signals will be denoted
by possibly indexed letters G, W and S respectively.
We will also assume that L contains standard notation
for numbers, needed to denote delays. To describe the
geometry of the circuit we use statements of the form
output(W, G) and input(W,G) read as “W is an out-
put (input) wire of gate G.” The types of gates in the
circuit and the gates’ delays are expressed by the state-
ments type_of(G, gate_type) (G is of type gate_type)
and delay(G, D) (G has delay D). In this notation,
the circuit from fig.1 corresponds to the following col-
lection of statements of A-Prolog:

type_of (g1, notg).
type-of(gz,notg).
input(ws,gs). type-of(gs,andg).
input(ws,g3). delay(gi,1).
output(ws, g1). delay(ge,0).
output(was, g2). delay(gs,1).
output(ws, gs).-

input(wi,g1).
input(ws, g2).

We denote such a representation of a circuit C' by
m(C). To simplify the user/program interface we im-
plemented a schematic entry program which allows the
user to draw a circuit diagram by choosing from the
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Figure 1. Graphical representation of a dig-
ital circuit.

options available on the ToolBox Window (shown in
fig.2(a)). For example, fig.5(b) shows how the circuit
diagram presented in fig.1 will appear on the graph-
ical interface. Once the circuit drawing is complete,
the entry program automatically translates it into the
corresponding A-Prolog representation.
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Figure 2. (a) ToolBox Window. (b) The

complete circuit.

To describe the dynamic behavior of the circuit we need
to introduce the notion of time. AI researchers devel-
oped a large variety of different models of time. For
our purposes, we assume the discrete linear time model
in which time is represented by non-negative integers.
We will view the application of signals to the input
wires of a circuit as the execution of an action which
changes the previous signals on these wires. This trig-
gers a process of signal propagation through the circuit
which goes uninterrupted unless the input signals are
changed again. In this way, describing behavior of the
circuit can be reduced to specifying effects of the cor-
responding actions as it is done in action theories of
AT (see for instance [12, 15, 20, 27, 30, 35]). In these
theories, dynamic domains consist of actions and flu-
ents (functions whose values depend on time). Action
theories are built to specify the values of fluents at

an arbitrary moment ¢, given their values at moment
0 and the domain history (a sequence of actions per-
formed in the domain in the past). In our domain we
have only one (parameterized) action apply(w,s) and
one (parameterized) propositional fluent, value(w, s).
A statement occurs(apply(w,s),t) says that at mo-
ment ¢ signal s is applied to wire w, while a statement
h(value(w, s),t) denotes that at moment ¢ the value of
the signal on w is s. We will also need an auxiliary re-
lation opposite(s1, s2) satisfied by the pairs [0, 1], [1, 0]
and [u,u]. Effects of actions will be represented in A-
Prolog by the following rule:

h(value(W,S),T) < occurs(apply(W,S),T).

Here T is a variable for time. To guarantee the com-
putability of our models we assume that T' ranges be-
tween 0 and some fixed time denoted by the constant
last_time. (This constant can be viewed as a param-
eter of our system and it is entered by the user via
the entry program as a part of the problem instance.)
The next rule describes the propagation of the applied
signal through the not gate of the circuit.

h(value(W2, S1), T+ D) <+ type_of(G,notg),
delay(G, D),
input(Wh, G),
output(Ws, G),
opposite(S1, S2),
h(value(W1, S2),T).

To represent the function of gates AND and OR, we
need to define some auxiliary relations. The first rela-
tion, not_all(G, S, T), holds if at moment T" some input
wire of the gate G has a signal different from S. This
can be expressed by the following rule:

not_all(G,S1,T) « input(W,G),
S1# 8o,
h(value(W, S2),T).

The second relation, all(G, S, T), holds if at time T all
the input wires of G have value S, and is defined by
the rule:

all(G,S,T) + mnotnotall(G,S,T).

Finally, the relation contains(G,S,T) holds if at mo-
ment T at least one input wire of G has value S, and
is defined by the rule:

contains(G,S,T) <« input(W,G),
h(value(W, S),T).

Now we can define the propagation of signals through
and gates:



h(value(W,1), T + D) <+ type_of(G,andy),
delay(G, D),
output(W, G),
all(G,1,T).

h(value(W,0),T + D) <+ type_of(G,andg),
delay(G, D),
output(W, G),
contains(G,0,T).

h(value(W,u), T + D) < type_of(G,andg),
delay(G, D),
output(W, G),
not contains(G,0,T),
contains(G,u,T).

The corresponding rules for the or gates can be de-
fined similarly. All the above rules define the effects of
changes caused in the circuit by applying new signals
to its input wires. To complete our program we need to
specify when the values of fluents do not change. The
task of finding a compact way to specify this in a formal
language is called the frame problem.®> J. McCarthy in
[21] suggested that this problem is closely related to
the problem of representing a particular default called
the law of inertia. The law says that “normally, things
stay as they are”, i.e., in dynamic domains fluents do
not change their values unless they are forced to. For-
tunately, the methodology of representing defaults in
A-Prolog is now well understood and can be applied
to obtain a simple and natural solution of the frame
problem for our domain. The solution is given by the
next two rules.

The first of them is the Law of Inertia:
h(value(W,S),T+1) <+ h(value(W,S),T),
not ~h(value(W, S),T+1).

This rule allows the reasoner (the program) to assume
that the value of a signal on a wire W does not change
from one moment to the next, unless it is forced to
believe otherwise. The second rule states that there
may be at most one signal present on a wire at a given
moment of time:
—h(value(W, 51),T) <+ Si1# Sa,
h(value(W, Sz2),T).

We denote the resulting program by CT' and call it
the simple circuit theory. The theory, in conjunction
with the specification of a circuit and its history up
to the current moment t., can be used to specify the
values of signals on the circuit wires at an arbitrary
moment 0 < ¢t < last_time. We call such a specifica-
tion a domain description at time t.. It consists of the

3The problem, posed in 1969 by J. McCarthy, proved to be a
difficult one and stimulated several interesting lines of research in
AT ([33]), particularly in research on nonmonotonic logics, logic
programming and theories about action and change.

encoding of a circuit in language L (see fig.1) together
with statements of the form:

occurs(apply(w, s),t).

where 0 < t < t.. Our schematic entry program allows
the user to specify the input graphically. We assume
that, unless otherwise specified, the initial signals of
the circuit are unknown. This assumption can be rep-
resented in A-Prolog by the rules:
h(value(W,u), 0) +— not known_value(W,0).
known_value(W,0) <« h(value(W,1),0).
known_value(W,0) <« h(value(W,0),0).

To simplify our presentation we just add these rules to
our CT theory.

We assume that domain descriptions used in conjunc-
tion with C'T are consistent, i.e., do not contain physi-
cal impossibilities such as: two different signals applied
to the same wire at the same time, multiple input wires
for the not gate, etc. Our schematic entry program will
eliminate the possibility of inconsistent data to be en-
tered into the corresponding domain description.

Using standard mathematical techniques recently de-
veloped by researchers in logic programming and non-
monotonic reasoning, it is not difficult to show that
for any consistent domain description D, the program
CT U D has exactly one consistent answer set. By
CT(D) we denote the set of all atoms, formed by predi-
cate symbol h, which belong to this answer set. The set
CT (D) can be viewed as a specification of a dynamic
behavior of a combinational circuit with delays.* Let
us first show that our specification correctly captures
the behavior of “ideal” combinational circuits.

Proposition 4.1 Let C' be a combinational circuit,
with input wires wy, . .., Wy, output wire w, and no de-
lays, which computes a boolean function f(Si,...,S,).
Then for any input vector si,...,sn of 0’s and 1’s,
h(value(w, s),0) € CT(D) iff s = f(s1,-..,5n), where
D = 7(C) U {occurs(apply(w;, s;),0) : 1 < i <n}.

Any combinational circuit C' with delays has its ideal
counterpart, i(C) obtained from C by setting all of the
gate delays of C to 0. The following proposition guar-
antees that for any input vector, si,...,s,, the out-
put signal of C will eventually stabilize at the value
of f(s1,...,5n) where f is the function defined by the
ideal counterpart of C. More precisely,

4The above definition works only for circuits computing a
“single value” boolean function, i.e., a function returning 0 or
1. This restriction is only for simplicity of presentation. All
the definitions and programs can be easily extended to functions
returning vectors of boolean values.



Proposition 4.2 Let C be a combinational circuit
with input wires wy, ..., w, and output wire w, and let
f(S1,...,8n) be a function computed by its ideal coun-
terpart i(C). Then there is a delay, 8, such that for any
t > 0 and any input vector s1,...,8, of 0’s and 1’s,
h(value(w, s),t) € CT(D) iff s = f(s1,--.,8n), where
D = 7(C) U {occurs(apply(w;, s;),0) : 1 < i <n}.

The circuit delay from the above proposition can be
found constructively. This can be done by another A-
Prolog program, A, consisting of the following rules:
input(W, G),

not is_output(W).

output(W, G).

is_input_wire(W) —

is_output(W) —

is_output_wire(W) «— output(W,G),

not is_input(W).
isinput(W) +— input(W, Q).
in_gate(G) «— isanput_wire(W),

input(W, G).

out_gate(G) — is_output_wire(W),
output(W, G).

out_delay(G, N) +— in_gate(Q),
delay(G, N).

in_delay(Ga, N) «— output(W,G1),

input(W, Ga),
out_delay(G1, N).
in_delay(G,N),
in_delay(G, M),
M > N.

in_delay(G,N),

—-maz_in_delay(G,N) <+

maz_in_delay(G,N)  «+

not —maz_in_delay(G, N).

out_delay(G, N) +—  maz_n_delay(G, N1),
delay(G, N2),

N = N1+ Ns.

out_gate(Q),
out_delay(G, N).

circuit_delay(N) —

The program defines a simple algorithm for comput-
ing circuit delays which can be found in standard in-
troductory texts on digital logic ([13, 31, 36]). The
result is not necessarily optimal, but it may serve as
a good practical approximation. (It is instructive to
notice how rules of A-Prolog are used to encode recur-
sive definitions.) Again, it is not difficult to show that
the program A U7 (C) has exactly one answer set and
that the answer set contains exactly one atom formed
by the predicate symbol circuit_delay. Let us denote
this atom by circuit_delay(d). We call number d the
computed delay of C' and denote it by §(C).

Now we can prove the following proposition.

Proposition 4.3 Let C' be a combinational circuit
with input wires wy,...,w, and output wire w and
let f(S1,...,S,) be a function computed by its ideal
counterpart i(C). Then for any t > §(C) and any in-
put vector s1,...,8, of 0’s and 1’s, h(value(w, s),t) €
CT(D) iff s = f(s1,...,8n), where D = n(C) U
{occurs(apply(w;, s;),0) : 1 < i < n}.

5. Using CT

The discussion in the previous section was limited to
the use of declarative semantics of A-Prolog for spec-
ifying the behavior of digital circuits. Thanks to the
existence of inference engines for A-Prolog, this spec-
ification can be combined with simple reasoning pro-
grams aimed at solving various design tasks, and it can
also be actually executed. We believe that the result-
ing executable prototypes can help to clarify and better
understand some notions related to digital circuits. It
remains to be verified if its applicability can go beyond
classrooms and theoretical laboratories. In this section
we will give some examples of such prototypes.

5.1. Simulating the circuit

In many cases it may be instructive for a student to
see the simulated behavior of the circuit. Ideally, this
should be an easy task: the student will specify the cir-
cuit and its history using our graphical interface. The
corresponding domain description D, combined with
CT, will be given as an input to one of the A-Prolog
inference engines, say SMODELS, which will compute
the program’s unique answer set. The circuit behav-
ior defined by CT'(D) will be extracted from the an-
swer set and displayed in graphical and numerical form
on the screen. The reality is rather close to the ideal
situation, but not identical to it. The reason is that
different inference engines have different restrictions
on the programs needed to guarantee their soundness
and completeness with respect to the semantics of A-
Prolog. This implies that CT (from the previous sec-
tion) needs to be slightly modified for the use of SMOD-
ELS. Fortunately, the modification is simple and basi-
cally amounts to replacing our typed variables by the
explicit types (see [2] for details.)

After this modification is done, the resulting system
will produce the output shown in fig.3, when given the
description of the circuit from fig.1 and the following
sequence of input values: [0, 0] applied on [wq,ws] at
time 0, and 1 applied on w; at time 1.

The output shows the propagation of symbols through
the circuit up to moment 10. This graphical represen-



— - [N S

File Problem Help |

1

A
[41 1 J
d=1 7]
I RS o0

N oy zor TB X
g100__\

gz2inl |
g3i0

wil :
w2

0'1'2'3'4's"6'7'8" 310

Model #1

Figure 3. (a) Output in numerical form.
(b) Timing Analysis.

tation helps the student to visualize and better under-
stand the dynamic behavior of the circuit.

5.2. Avoiding hazards

One interesting problem when dealing with digital cir-
cuits involving delays is the occurrence of transient in-
correct signal values, called glitches, on some of the cir-
cuit wires. A hazard is said to exist when a circuit has a
possibility of producing such a glitch. A logic designer
must be prepared to eliminate hazards even though a
glitch may occur only under the worst-case combina-
tion of logical and electrical conditions [36]. We briefly
describe a declarative program for the detection of a
particular form of hazard. Combined with the infer-
ence engine of SMODELS this gives us a new algorithm
for finding hazards different from the known algorithms
(see [24]). Again, we believe that the program is suf-
ficiently clear and the algorithm is reasonably efficient
to help a student to understand the phenomena.

We will say that a circuit C', computing boolean func-
tion f is hazardous if there are two vectors, I; and I5,
of input signals which differ on the value of exactly one
input wire®, and during the transition period the value
on the output wire of C' changes to a signal different
from f(I2).

5We call a consecutive application of such input signals to C
a simple transition.

To better understand this notion let us consider the
circuit in fig.4, taken from [36].

wl ®

w2 )
w3 ¢ w9 9
w8 will
DB P
g6

[92 w6 ﬂ w10
w4 J

Figure 4. Circuit with a hazard.

In this circuit, there are 3 paths from input wire wy
to output wire wi;. We assume that all gates, except
gs and g4, have delay 0. The delay of g3 is 1 and the
delay of g4 is 2. Two of the paths go through these
slower gates and affect the output signal. To under-
stand how, let us consider the following evolution of
the circuit signals. (a) Applying input signals [0, 0, 0, 1]
to input wires [wq, wq, w3, w4] causes the output signal
to become 1 at time 0. If we change (b) the value on
input wire we to 1 at time 1, this change is propa-
gated through the circuit and makes the output value
of C become 0 at time 1. However, the output value
of gate g3 is delayed by 1 time unit and (c) will force
the output of the circuit to change again to 1 at time
2. Then, (d) the output of the slower gate g4, with
delay 2, also changes, forcing the circuit output signal
to finally reach value 0 at time 3. Therefore, a single
transition on input wy caused the values of output wq;
to change three times, as follows: 1 -0 — 1 — 0.

Our goal now is to define hazardous circuits in A-
Prolog. We will construct a program, GD (which
stands for “glitch detector”), such that GD Un(C) will
have an answer set iff a circuit C' is hazardous.

We assume that w is the output wire of circuit C' and
that there is a relation required_output(s) such that
for any domain description D, required_output(s) be-
longs to the answer set of CT U D iff s is the output
signal of the ideal counterpart i(C) of C. (To simplify
the presentation we skip the definition of this relation
which can be found in [2].) Suppose now we are given
a history H containing a simple transition from I; to
I5. Then, by definition, this transition causes a glitch
if the following condition holds:

glitch + required_output(Si),
h(value(w, S1),T1),
h(value(w, S2),T2),
S1 # S2,
Ty >Ti.



Adding the above rule together with a constraint

<~ not glitch.

to GD will ensure that if C' is safe (i.e., has no hazard)
then GD U 7(C) will have no answer set.

To complete the construction of GD we need to gener-
ate histories containing possible simple transitions and
check that they do not contain glitches. This can be
done by first generating possible input vectors applied
to C at moment 0, which is achieved by the rules:
occurs(apply(W, 1),0) « is_input_wire(W),
not occurs(apply(W,0),0).
occurs(apply(W,0),0) < is_input_wire(W),
not occurs(apply(W,1),0).

Then, we proceed by introducing a new relation
change(W) which holds when at moment 1 the signal
applied to wire W at 0 is changed to its opposite.
occurs(apply(W, S1),1) < change(W),
occurs(apply(W, S2),0),
opposite(S1, S2).

To ensure that histories generated by our program con-
tain only simple transitions we need to add the follow-
ing rule:

change(wn) or ... or change(ws),

where w1, ..., wg is the list of the input wires of C. The
DLV engine would understand this rule and would prop-
erly compute the corresponding answer sets. However,
to make it work for SMODELS we need to eliminate the
disjunction, which can be done by the following rules:
change(W) — isanput_wire(W),
not other_changed(W).

other_changed(W) <+ change(W1)
W £ Wi

Let GD be the program consisting of the rules of CT,
which were introduced in this subsection, and the def-
inition of the relation required_output.

Proposition 5.1 A combinational circuit C is haz-
ardous iff GD Uw(C) is consistent, i.e., has an answer
set.

Notice that each answer set describes a simple tran-
sition causing a glitch and the signals propagation
through the circuit. Our graphical interface allows the
user to specify a circuit and request it to be checked for
glitches. For example, in the circuit C' from fig.4, the
program will return a message box informing the user
that the circuit is hazardous, and it will also graphi-
cally show, via the Analyzer Window, the situations in
which the glitch occurs, (see fig.5.)

- + it P X

File Problem Ip

A glitch was detected

il Analyzer o[
q3i0
q7ol |
g6i2

]

e
w3
wh

w7 |
wl [ |
| |

wid |

w1 ]

0'1'2'3"4a's"6'7 8310

Model #3

Figure 5. Interface output for glitch detec-
tion problem.

The simple theory for circuits, CT, can be used in a
similar way to solve other problems associated with dig-
ital design. CT, along with various reasoning modules,
can be used to decide what signals should be applied to
the input wires of a circuit to produce the desired out-
put, to find malfunctioning components responsible for
the incorrect behavior of a circuit, to simulate certain
forms of sequential circuits, etc. We hope, however,
that the above examples are sufficient for illustrative
purposes.

6. Conclusions

It was believed for some time that A-Prolog is capa-
ble of representing default knowledge as well as vari-
ous forms of knowledge incompleteness. Quite recently
it was noticed that A-Prolog is also suitable for mod-
eling reasoning of agents in dynamic domains. Even
more recently, it was understood that methodologies
of declarative programming developed in these two ar-
eas can be used in many other interesting domains. In
this paper we gave a short introduction to the syntax




and semantic of A-Prolog and demonstrated the appli-
cability of this methodology by solving the problem of
reasoning about digital circuits. The resulting system
was used by some of our students and we are plan-
ning to make it available for general use in some of the
related classes.

When modeling complex domains, the syntactic re-
strictions of A-Prolog can make some rules appear non-
natural — in our case, the three rules used in GD in
order to exhaustively generate possible input vectors
for the circuit. We are currently working on an exten-
sion of A-Prolog to deal with sets that is expected to
overcome this problem.

We would like to stress the following software engineer-
ing lessons learned from this experiment:

1. syntax and semantic of A-Prolog, as well as its
mathematical theory, allowed us to quickly build
a concise and modular solution to a comparatively
non-trivial problem;

2. the solution was constructed in parallel with
the development of the proof of its correctness.
Declarativeness of A-Prolog greatly facilitated this
process;

3. reasoning and constraint satisfaction algorithms
built in the A-Prolog inference engine proved to be
sufficiently efficient for implementing interesting
new algorithms for simulation and analysis of dig-
ital circuits. Comparison of their efficiency with
respect to other known algorithms remains to be
investigated;

4. declarative programs in A-Prolog were nicely in-
tegrated with each other and with the Java-based
graphical interface allowing a user—friendly inter-
action with the system.

We believe that the integration of programs writ-
ten in different languages, with different programming
paradigms, will be a trademark of future knowledge
intensive systems.
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